Preconditioned Iterative Methods for Solving Linear Least Squares Problems

نویسندگان

  • Rafael Bru
  • José Marín
  • José Mas
  • Miroslav Tuma
چکیده

New preconditioning strategies for solving m × n overdetermined large and sparse linear least squares problems using the CGLS method are described. First, direct preconditioning of the normal equations by the Balanced Incomplete Factorization (BIF) for symmetric and positive definite matrices is studied and a new breakdown-free strategy is proposed. Preconditioning based on the incomplete LU factors of an n × n submatrix of the system matrix is our second approach. A new way to find this submatrix based on a specific weighted transversal problem is proposed. Numerical experiments demonstrate different algebraic and implementational features of the new approaches and put them into the context of current progress in preconditioning of CGLS. It is shown, in particular, that the robustness demonstrated earlier by the BIF preconditioning strategy transfers into the linear least squares solvers and the use of the weighted transversal helps to improve the LU-based approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical methods for generalized least squares problems

Usually generalized least squares problems are solved by transforming them into regular least squares problems which can then be solved by well-known numerical methods. However, this approach is not very effective in some cases and, besides, is very expensive for large scale problems. In 1979, Paige suggested another approach which consists of solving an equivalent equality-constrained least sq...

متن کامل

Some Results on New Preconditioned Generalized Mixed-Type Splitting Iterative Methods

In this paper, we present new preconditioned generalized mixed-type splitting (GMTS) methods for solving weighted linear least square problems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned GMTS methods converge faster than the GMTS method whenever the GMTS method is convergent. Finally...

متن کامل

On the modification of the preconditioned AOR iterative method for linear system

In this paper, we will present a modification of the preconditioned AOR-type method for solving the linear system. A theorem is given to show the convergence rate of modification of the preconditioned AOR methods that can be enlarged than the convergence AOR method.

متن کامل

Comparison Results on Preconditioned GAOR Methods for Weighted Linear Least Squares Problems

We present preconditioned generalized accelerated overrelaxation methods for solving weighted linear least square problems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned GAOR methods converge faster than the GAOR method whenever the GAOR method is convergent. Finally, we give a numerica...

متن کامل

Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems

Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...

متن کامل

Block SOR methods for rank-de cient least-squares problems

Many papers have discussed preconditioned block iterative methods for solving full rank least-squares problems. However very few papers studied iterative methods for solving rank-de cient least-squares problems. Miller and Neumann (1987) proposed the 4-block SOR method for solving the rank-de cient problem. Here a 2-block SOR method and a 3-block SOR method are proposed to solve such problem. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014